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THE SOLUTION OF A THERMOELASTICITY PROBLEM FOR INHOMOGENEOUS BODIES 
IN TERMS OF STRESSES BY THE PERTURBATION METHOD* 

P.A. KUNTASRRV and 1U.V. NEMIROVSKII 

Using the general properties of positive-definiteness of the elasticity 
theory operator, the convergence in an energy metric is proved for the 
solution of a thermoelasticity problem for a three-dimensional continuously 
inhomogeneous isotropic body by the perturbation method. 

The convergence of a solution by the perturbation method was proved 
earlier /l/ for the plane problem of the theory of elasticity of 
inhomogeneous bodies on the basis of properties for representing harmonic 
functions in terms of an integral with a weak singularity and the 
properties of multidimensional singular integrals. A comparison is given 
in /2/ between the exact solution and a solution constructed by the 
perturbation method for a special case of the plane problem, and their 
agreement in the domain of convergence is noted. Another approach that 
relies on the theory of integral equations is described in /3/, where 
an analysis is given of three-dimensional boundary value problems of the 
linear theory of elasticity and thermoelasticity for homogeneous and 
piecewise-homogeneous media, including existence and uniqueness theorems 
for the solutions. 

1. We consider a linearly elastic inhomogeneous isotropic body occupying a finite 
domain V with surface A. The body is fastened at a part A, of the surface A, where there 

are no displacements u,. On the remainder .1: of the surface A. a surface load r,(.i acts 

in conjuction with the volume forces x',(.s and the temperature field 7(.) to cause elastic 

stresses :aj and strains E,. 

Moreover, following the general methods described in /4/, we give a formulation of the 
thermoelasticity problem and we prove the existence and uniqueness of its solution. 

Let L,; = (I (T - T)h,j denote the thermal strain tensor, where z is the coefficient of 

thermal expansion, T,, is the initial temperature in the undeformed state, and 6,, is the 

Kronecker delta. We assume that the nature of the state of stress and strain and the thermal 

field enables the linear Cauchy relationships for the strain, and tine Duhamel-Neumann 
relationships 

t!, - tj:, B,:,,. *,j - ",j L?+j (1 I, 

to be used. 
Here s,>. (,,, are the deviator parts of the stress and strain tensors: summation is over 

the repeated indices, and the functions B,. B:. characterizing the compliance distribution 
in the elastic body, are expressed in terms of Young's modulus E and Poisson's ratio x in 
the form 

We assume the functions B, (.I and B, (.I to be continuous and strictly positive in V. 
We will assume that besides the external load a tensor z,~; characterizing it is also given 
and satisfies the conditions 

: ,,I. ,s -_r,- 0 on I: : , c, = p, on Az (1.2) 

The comma here denotes partial differentiation with respect to the appropriate coordinate, 
and )I., are the vector components of the unit external normal to the surface Al. Relative 

to the nature of the external load and the thermal field we assume that the appropriate 
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quantities +,, and Fij' belong to the space L,(1.) of nine-dimensional vectors of square- 
summable functions 

11 39 p = (5‘ , 6’) = 5 31,i:t,cdlT < cm. (e’, e”) <co. (1.31 

We introduce the scalar product 

for stress tensors from Lz (1'1 . 

We denote the norm induced by the scalar product (1.4) by Ij IIa and call it "energetic". 

It can be confirmed that the norm Ij j/n is equivalent to the noxm of L,(F) and 

15, ZIB < BZ(Z. :). (3, sj Q 12 Is, SIB (t.5, 
(Y* = ,'~;HI. mill (8, (.), B, (.)))-I, frz = no'_":: mas (B, !,), B, (.))) . 

i e 

We introduce the space D of continuously differentiable tensors in V that satisfy the 
homogeneous equilibrium equations and the homogeneous force boundary conditions 

D = (sL, 1 s,, E Cl (1'); jli,) = 0 on 1.; cj,nj = 0 on ‘421 . (I.61 

We call the supplement of the space D in the energy metric the energy space Y. By 
construction D c Cl(1‘)c L,(l?. We show that Y c L, (1‘). Indeed, since the energy norm and 
the norm of t,(l3 are identical in conformity with conditions (1.5), the closure /D/ in 

either metric agrees and equals Y. Then the desired embedding YzCL1.(\‘) results from the 
known /5/ closure property .\I, z .\I, =+ IN,1 z ldl,) and the completeness of &(I*: 

I) z Y c L,(1 i. (1.7; 

We call the generalized solution of the thermoelasticity problem the stress distribution 
:=$-i-7 that minimizes the Castigfiano functional /6/ in 

The necessary condition for this functional to have a minimum is 

7 : IT. T*lB = I (T’,, VT* E Y L(T*) = -(EL. 7.j - IS. T*lB (1.0 

We will show that here 1 is a linear functional bounded in Y. We have (the supremum 
is taken for I/ T ii* = I) 

/ii I/B = IUP 1 - (E’. T) - [CT’, Tls j x< SUP 1 (E”. 7) I + SUP 1 [O’, 71~ I C 
sup (” E0 I’ * I’ T /: 2)’ ’ + sup c (rG p 1; T l&q)“* c a I/ e” /: + 6 I/ a0 /I < cc 

According to Riesz's theorem /J/, a unique? element 'I exists in the Hilbert space I 
that yields a representation of the linear functional I bounded in rP in the form of the 
scalar product (1.9). The Castigliano functional is reduced by substituting (1.9) into 
(1.8) to the form R(P)= /;T- r*llgl - ii~(I~2+Ij <IIB*. which shows that the element s=Y satisfying 

(1.9) achieves the absolute minimum of the Castigliano minimum. 
Therefore, the existence and uniqueness of the generalized solution of the thermoelasticity 

problem are proved. 

2. The practical solution of the thermoelasticity problem for an inhomogeneous body will 
often be fraught with computational difficulties. In many cases it is convenient to use the 
perturbation method procedure which reduces the thermoelasticity problem for an inhomogeneous 
body to a series of thermoelasticity problems for a homogeneous body. 

We separate the given inhomogeneous distribution of elastic compliances B,(.) into the 

sum of a homogeneous distribution of compliances H, and a perturbing addition --tir, (.) such 

that 
B, (-I= Hi- rb,(.i.O<i(l.O<b,(.)<H,.i=1,2. (2.11 

This can always be done by taking numbers t, 8, satisfying the conditions 

We will seek the generalized solution of the thermoelasticity problem (1.9) in the form 
of a power series in the parameter t 
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(2.2) 

Substituting (2.1),(2.2) into (1.91, grouping terms and equating those with identical 
powers of t to zero, we obtain a series of thermoelasticity problems to determine 8% 

T(o): (7'0'. T'jH = - (CO. 7.) - [a’, ?*lHq VT’ E Y (1.3) 

T(l) : [T(‘), qrr = It! (?‘). v+ e pr: ro (F) = [a0 f P, Fl* (2.4) 

+*+n : f dl'"I),7yH = 2, (5*1),vl* E I; t, (T') = [t'*',r*lb . (2.5) 

We will show that the linear functionals fh.k= l,.%... are bounded in y'. To a0 this 

we use the following inequality that results from inequality (2.1) 

(0, @, < I'-', ala. (2.N 

Let I/ T@) BR < 0-2 then (the supremum is taken for nils= %1by using (2.6) 

11 lk llrr =z Pup 1 [T@?llb I <:[r(*)n, SUP pfffb < pq~ sup fl T!!,, = IIT@)J& 00 . 

A similar estimate can also be obtained for the linear functional I,. Were rtor is 

bounded in V as a solution of the thermoelastieity problem (2.3) whose properties were 
studied in Sec.1. From the boundedness of the functional I,, it follows from the above- 

mentioned Riesz theorem that the solution rfi) of problem (2.4) is defined uniquely, and later 

by induction all the fee) are defined uniquely from the recursion sequence of problems (2.5). 
It is thereby proved that each component of the series (2.2) for the stresses in an 

inhomogeneous body is defined uniquely. 
We will prove that the series (2.2) converges in the energy metric Y, Because of the 

completeness of Y, it is sufficient to verify, for this, that 

We will first establish certain useful properties of the functions *GJ . Expanding 

the expression (T('+~), T("-~)]~ using (2.5) we obtain the property (T'~', r("^"Js = (T@"-'~, T~"']H. which 

when applied p times will yield 

IT(=), G'j H s [+V), f("+P)]H (2.8) 

We replace the components to the right of the large quantities by (2.6) in the inequality 

2 1 10. ?I,, 1 < 10. ojb + h. Th, that follows from the non-negativity of the expression 11 d - 7 lib' We 
obtain the estimate 

2 1 in- T]b j < in. =df) - [r. df, . (2.01 

Furthermore, we take P = T('-*) in relationship (2.51, and using inequality (2.91, we 
obtain 

)I T’hi’J /,u? +g 1) T(h) j.E2 .(2.10j 

The property 

, j,fi). ,iP)lH j c / ? $1) $1 ,HP, k=1.2 . . . . . p=i.3.... (2.lfI 

that results from the Schwartz inequality and the inequality (2.10), also holds, 
To prove property (2.7) of the convergence of series (2.2) of the perturbation method, 

we construct the following chain of inequalities by using properties (2.8) and (2.11): 
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The numerical series 2 1,s converges under the condition O<f<l assumed, consequently, 
the sequence of its partial sums is fundamental. Therefore, the last expression tends to 
zero as m-09,n-cc in the chain of estimates presented. 

Summarizing, the solution of the thermoelasticity problem for an inhomogeneous body 
can be sought by the perturbation method in the form of the series (2.2) that converges in 
the energy space metric and in theequivalent metric L,(V). The stresses #) are here 

defined uniquely from the recursion sequence of problems (2.3),(2.4),(2.5). 
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EQUILIBRIUM OF A PRESTRESSED ELASTIC BODY WEAKENED BY A PLANE ELLIPTICALCRACK* 

V.M. ALEKSANDROV and B.V. SOBOL' 

The problem of normal pressure loading of the edges of a plane elliptical 
crack is considered. The crack subjected to the load is in the open state. 
The medium in which it is located is frist subjected to homogeneous 
biaxial tension or compression along the plane of the crack. A model of 

incompressible neo-Hooke material is considered /l/. The problem is reduced 
to solving a singular integral equation of the first kind. In the case 
when the intensity of the initial loading is identical in both directions, 
the problen has an exact solution. If the coefficients of preliminary 
tension differ slightly, construction of the solution of the problem is 
possible by an asymptotic method /2/. It is shown that as in the case of 
equal coefficients /3/**,theinitialstressdoesnot alter the order of the 
singularity of the stress field near the crack edge and only affects the 
normal stress intensity factor. (**Seealso: Filippova, L.M. On the 
opening of a circular crack in a prestressed elastic body. Second All- 

Union Scientific Conference, "Mixed Problems of the Mechanics of a 
Deformable Body". Abstracts of Reports /in Russian/, Dnepropetrovsk 
State Univ.., 1981) 

Analogous problems are considered in 14, 5/far the case of equal 
prestrain coefficients in a body containing a circular crack. A solution 
/4/ is constructed for the axisymmetric problem for a layer under different 
conditions on its faces, and it is shown /5/ that it is possible to use 
the solution of the problem concerning a crack in an anisotropic material. 
A solution of the axisymmetric problem is constructed /6/ in the case of 
radial finite prestrain. An asymptotic solution /7/ is obtained for the 
spatial contact problem for a prestressed elastic body. 

1. Let a crack occupying the domain $2, in planform be located in the plane s= 0 of an 
elastic space. Uniform loads c== I, and oy= f, act in two mutually perpendicular directions 
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